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Almost-Periodic Solutions of Navier-Stokes Equations 
and Inequalities

By Giovanni Prouse

Introduction
In this talk I would like to present some results, old and new, concerning almost- 
periodic solutions of Navier-Stokes equations and inequalities, which govern the 
motion of viscous compressible or incompressible fluids (respectively gases or liquids).

Of the various problems which can be associated with this motion I shall, in what 
follows, for the sake of simplicity, consider only the one corresponding to a fluid in a 
bounded 2- or 3-dimensional domain ß, which boundary T constituted by a material 
surface. Denoting by u (x,t) x, E £2) the velocity of the fluid, the problem
indicated above corresponds, by the limit layer theory, to the homogeneous Dirichlet 
boundary condition

ü (x,t) = 0 (x 6 r). (1.1)

The following notations will be used in the sequel.
f(x,t) external force acting on the fluid;
p(x,t) pressure;
Q(x,t) density; in the incompressible case (p = const) I shall assume, for simplicity, 

p= 1;
viscosity coefficients (resp. shear and bulk viscosity);

& space of functions (or vectors) e C°°(Q) and with compact support in ß, 
.T space of vectors v € ^and such that div v = 0;
Ff (s integer 0) space of functions (or vectors) square summable in ß, together 

with their derivatives (in the sense of distributions) of order 5;
Ns closure of ./f in/7*.

The most common mathematical model associated to the motion of a viscous fluid is 
constituted by the Navier-Stokes equations which, in the case of incompressible fluids, take 
the form

—- (lAu + (w.grad) u + grad p=f 
dt

div u = 0.
(1-2)

while, if the fluid is compressible, are expressed by
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. dw 1
Q ~ + (t + ~/J.) grad div w - pAu + Q (w.grad) u + grad p = pf 

dg
+ div (W = 0 

\p=P(Q)-

(1-3)

The third equation of (1.3) is an equation of state which, in most practical cases, is given 
by p = k(f (k, y > 0).

It should be noted that (1.2) cannot be considered as a special case of (1.3), since the 
two systems are essentially different.

Another model associated to viscous incompressible flow corresponds to the Navier- 
Stokes inequalities which are introduced as follows. Observing that the Navier-Stokes 
equations are non-relativistic and, consequently, do not have any physical meaning 
when |w| approaches the velocity of light, the model (1.2) is equivalent, from a physical 
point of view, to the one corresponding to the relationships

— ia.Au + (T.grad) u + grad p = f where |w| < c

div u = 0 , \u\ c
u continuous at the “interfaces” of the two sets in which resp. |w| < c and |w| = c.

It is well known, on the other hand, from the theory of differential inequalities (see, for 
instance, Lions [1]) that (1.4) is equivalent to the system

£, jß \dt~ + (“-gracV " + grad P -// (u - (p) dt dQ 0.

div u - 0 (1.5)

K <p such that |<p| c and V f t € (—°°, +°°).
System (1.5) therefore constitutes an inequality model for the problem considered, in 

the incompressible case. An analogous model could obviously be given for compres
sible fluids, but it will not be considered here.

In the next section I shall recall some results concerning the almost-periodic solu
tions of the three models presented; it is however useful to first briefly summarize the 
main existence and uniqueness theorems ofa solution of (1.2), (1.3), (1.5) satisfying (1.1) 
and the initial conditions

u(x, 0) = ufx)
u(x, 0) = uQ(x) , p(x, 0) = pQ(x) 

(incompressible case)
(compressible case)
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These theorems represent, in fact, the first step in the study of the almost-periodic 
solutions.

The solutions will always be intended in the sense of distributions, while I shall not, 
for the sake of simplicity, indicated explicitly the functional spaces in which the 
solutions are found, or the assumptions on the data.

Considering system (1.2), Hopf [2] proved the global (intime) existence of a solution 
in any space dimension; the uniqueness of such a solution can however be guaranteed 
only in 2 dimensions (Lions and Prodi [3]). An existence and uniqueness theorem in Q 
x T), £2 3-dimensional, holds provided f is “sufficiently small'’ (Kieselev and 
Ladyzenskaja [4]).

One can, on the other hand, prove a global existence and uniqueness theorem for the 
solution in ß x fO, T) of (1.5) (Prouse [5]).

In the compressible case, only a local existence and uniqueness theorem holds (Valli 
[6]); in order to obtain global existence and uniqueness, one must assume that /is 
“sufficiently small” (Marcati and Valli [7]).

Almost-periodicity theorems
The models introduced in the preceding section all correspond to dissipative problems, 
and the study of their almost-periodic solutions follows therefore from the guidelines 
given, for ordinary dissipative differential equations, by Favard [8] and Amerio [9] 
respectively in the linear and non linear case.

In the theory of almost-periodic solutions of partial differential equations, vector 
valued functions play an essential role, together with the concepts of weakly almost- 
periodic and S^-Stepanov almost-periodic functions. For these concepts and for the 
basic definitions and properties of functions with values in a Banach space, I refer to the 
note by L. Amerio which appears in the present volume (see also Amerio, Prouse [10]).

While the details of the proofs of the existence and uniqueness of an almost-periodic 
solution, under the assumption that f(t) is almost-periodic, are obviously different for 
the three models considered, the basic scheme is similar and consists essentially of the 
following steps:
a) A global existence theorem in +°°J;
b) An existence and uniqueness theorem of a solution u( t) (or {ü(t), Q(t)}) bounded 

on J = (—°°, +00) (assuming//) bounded on /);
c) The proof that ü(t) {{ü(t), Q (/)}) is weakly almost-periodic iff(t) is weakly 

almost-periodic;
d) The proof that the range of ü(t) ({ü(t), Q /)}) is relatively compact 'tff(t) is 

almost-periodic.
Observe that point a) corresponds essentially to the results recalled in the preceding 

section, setting T = +00.
Assuming that f(t) is S1-Stepanov almost-periodic, the following theorems then hold.
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Theorem I (Prouse [11]): If £2 is 2-dimensional, f(t) elf (J;L2) and is “sufficiently small”, 
(1.1), (1.2) admit a unique solution ü(t) which is N° -Bohr and N{-S~-Stepanov almost-periodic.

Theorem II (Foias [12], Heywood [13]): If £2 is 3-dimensional and of class C\f(t) e 
I? (J,NX) A H1 (J, (Nx)*) andis “sufficiently small”, then (1.1), (1.2) admit aunique solution 
ü(t) which is Ar -Bohr and N -S -Stepanov almost-periodic.

Theorem III (Marcati and Valli [7]): If £2 is 3-dimensional and of class C\p e C3, p' > 0, 
f(t) 6 Z,2 (J;HX) A H) (J;and is “sufficiently small”, then (1.1), (1-3) admit a unique 
solution (u(t), Q (t)} with ü(t) H -Bohr and H -S -Stepanov almost-periodic, Q(t) L-Bohr and 
H2-S2-Stepanov almost-periodic.

Theorem IV (Prouse [14]): If £2 is 3-dimensional,f(t) eLf (J;L2) andis “sufficiently small”, 
then (1.1), (1.4) admit aunique solution ü(t) which is N®-Bohr and Nx-S2-Stepanov almost-periodic.
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