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Almost-Periodic Solutions of Navier-Stokes Equations 
and Inequalities

By Giovanni Prouse

Introduction
In this talk I would like to present some results, old and new, concerning almost- 
periodic solutions of Navier-Stokes equations and inequalities, which govern the 
motion of viscous compressible or incompressible fluids (respectively gases or liquids).

Of the various problems which can be associated with this motion I shall, in what 
follows, for the sake of simplicity, consider only the one corresponding to a fluid in a 
bounded 2- or 3-dimensional domain ß, which boundary T constituted by a material 
surface. Denoting by u (x,t) x, E £2) the velocity of the fluid, the problem
indicated above corresponds, by the limit layer theory, to the homogeneous Dirichlet 
boundary condition

ü (x,t) = 0 (x 6 r). (1.1)

The following notations will be used in the sequel.
f(x,t) external force acting on the fluid;
p(x,t) pressure;
Q(x,t) density; in the incompressible case (p = const) I shall assume, for simplicity, 

p= 1;
viscosity coefficients (resp. shear and bulk viscosity);

& space of functions (or vectors) e C°°(Q) and with compact support in ß, 
.T space of vectors v € ^and such that div v = 0;
Ff (s integer 0) space of functions (or vectors) square summable in ß, together 

with their derivatives (in the sense of distributions) of order 5;
Ns closure of ./f in/7*.

The most common mathematical model associated to the motion of a viscous fluid is 
constituted by the Navier-Stokes equations which, in the case of incompressible fluids, take 
the form

—- (lAu + (w.grad) u + grad p=f 
dt

div u = 0.
(1-2)

while, if the fluid is compressible, are expressed by
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. dw 1
Q ~ + (t + ~/J.) grad div w - pAu + Q (w.grad) u + grad p = pf 

dg
+ div (W = 0 

\p=P(Q)-

(1-3)

The third equation of (1.3) is an equation of state which, in most practical cases, is given 
by p = k(f (k, y > 0).

It should be noted that (1.2) cannot be considered as a special case of (1.3), since the 
two systems are essentially different.

Another model associated to viscous incompressible flow corresponds to the Navier- 
Stokes inequalities which are introduced as follows. Observing that the Navier-Stokes 
equations are non-relativistic and, consequently, do not have any physical meaning 
when |w| approaches the velocity of light, the model (1.2) is equivalent, from a physical 
point of view, to the one corresponding to the relationships

— ia.Au + (T.grad) u + grad p = f where |w| < c

div u = 0 , \u\ c
u continuous at the “interfaces” of the two sets in which resp. |w| < c and |w| = c.

It is well known, on the other hand, from the theory of differential inequalities (see, for 
instance, Lions [1]) that (1.4) is equivalent to the system

£, jß \dt~ + (“-gracV " + grad P -// (u - (p) dt dQ 0.

div u - 0 (1.5)

K <p such that |<p| c and V f t € (—°°, +°°).
System (1.5) therefore constitutes an inequality model for the problem considered, in 

the incompressible case. An analogous model could obviously be given for compres­
sible fluids, but it will not be considered here.

In the next section I shall recall some results concerning the almost-periodic solu­
tions of the three models presented; it is however useful to first briefly summarize the 
main existence and uniqueness theorems ofa solution of (1.2), (1.3), (1.5) satisfying (1.1) 
and the initial conditions

u(x, 0) = ufx)
u(x, 0) = uQ(x) , p(x, 0) = pQ(x) 

(incompressible case)
(compressible case)
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These theorems represent, in fact, the first step in the study of the almost-periodic 
solutions.

The solutions will always be intended in the sense of distributions, while I shall not, 
for the sake of simplicity, indicated explicitly the functional spaces in which the 
solutions are found, or the assumptions on the data.

Considering system (1.2), Hopf [2] proved the global (intime) existence of a solution 
in any space dimension; the uniqueness of such a solution can however be guaranteed 
only in 2 dimensions (Lions and Prodi [3]). An existence and uniqueness theorem in Q 
x T), £2 3-dimensional, holds provided f is “sufficiently small'’ (Kieselev and 
Ladyzenskaja [4]).

One can, on the other hand, prove a global existence and uniqueness theorem for the 
solution in ß x fO, T) of (1.5) (Prouse [5]).

In the compressible case, only a local existence and uniqueness theorem holds (Valli 
[6]); in order to obtain global existence and uniqueness, one must assume that /is 
“sufficiently small” (Marcati and Valli [7]).

Almost-periodicity theorems
The models introduced in the preceding section all correspond to dissipative problems, 
and the study of their almost-periodic solutions follows therefore from the guidelines 
given, for ordinary dissipative differential equations, by Favard [8] and Amerio [9] 
respectively in the linear and non linear case.

In the theory of almost-periodic solutions of partial differential equations, vector 
valued functions play an essential role, together with the concepts of weakly almost- 
periodic and S^-Stepanov almost-periodic functions. For these concepts and for the 
basic definitions and properties of functions with values in a Banach space, I refer to the 
note by L. Amerio which appears in the present volume (see also Amerio, Prouse [10]).

While the details of the proofs of the existence and uniqueness of an almost-periodic 
solution, under the assumption that f(t) is almost-periodic, are obviously different for 
the three models considered, the basic scheme is similar and consists essentially of the 
following steps:
a) A global existence theorem in +°°J;
b) An existence and uniqueness theorem of a solution u( t) (or {ü(t), Q(t)}) bounded 

on J = (—°°, +00) (assuming//) bounded on /);
c) The proof that ü(t) {{ü(t), Q (/)}) is weakly almost-periodic iff(t) is weakly 

almost-periodic;
d) The proof that the range of ü(t) ({ü(t), Q /)}) is relatively compact 'tff(t) is 

almost-periodic.
Observe that point a) corresponds essentially to the results recalled in the preceding 

section, setting T = +00.
Assuming that f(t) is S1-Stepanov almost-periodic, the following theorems then hold.
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Theorem I (Prouse [11]): If £2 is 2-dimensional, f(t) elf (J;L2) and is “sufficiently small”, 
(1.1), (1.2) admit a unique solution ü(t) which is N° -Bohr and N{-S~-Stepanov almost-periodic.

Theorem II (Foias [12], Heywood [13]): If £2 is 3-dimensional and of class C\f(t) e 
I? (J,NX) A H1 (J, (Nx)*) andis “sufficiently small”, then (1.1), (1.2) admit aunique solution 
ü(t) which is Ar -Bohr and N -S -Stepanov almost-periodic.

Theorem III (Marcati and Valli [7]): If £2 is 3-dimensional and of class C\p e C3, p' > 0, 
f(t) 6 Z,2 (J;HX) A H) (J;and is “sufficiently small”, then (1.1), (1-3) admit a unique 
solution (u(t), Q (t)} with ü(t) H -Bohr and H -S -Stepanov almost-periodic, Q(t) L-Bohr and 
H2-S2-Stepanov almost-periodic.

Theorem IV (Prouse [14]): If £2 is 3-dimensional,f(t) eLf (J;L2) andis “sufficiently small”, 
then (1.1), (1.4) admit aunique solution ü(t) which is N®-Bohr and Nx-S2-Stepanov almost-periodic.
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